# CNN MNIST OK import numpy as np from keras.utils import np_utils np.random.seed(10) from keras.datasets import mnist import matplotlib.pyplot as plt from keras.models import Sequential from keras.layers import Conv2D,MaxPooling2D,Dropout,Flatten,Dense def show_images_labels_predictions(images,labels, predictions,start_id,num=10): plt.gcf().set_size_inches(12, 14) if num>25: num=25 for i in range(0, num): ax=plt.subplot(5,5, 1+i) #顯示黑白圖片 ax.imshow(images[start_id], cmap='binary') # 有 AI 預測結果資料, 才在標題顯示預測結果 if( len(predictions) > 0 ) : title = 'ai = ' + str(predictions[i]) # 預測正確顯示(o), 錯誤顯示(x) title += (' (o)' if predictions[i]==labels[i] else ' (x)') title += '\nlabel = ' + str(labels[i]) # 沒有 AI 預測結果資料, 只在標題顯示真實數值 else : title = 'label = ' + str(labels[i]) # X, Y 軸不顯示刻度 ax.set_title(title,fontsize=12) ax.set_xticks([]);ax.set_yticks([]) start_id+=1 plt.show() #建立訓練資料和測試資料,包括訓練特徵集、訓練標籤和測試特徵集、測試標籤 (train_feature, train_label),\ (test_feature, test_label) = mnist.load_data() #將 Features 特徵值換為 60000*28*28*1 的 4 維矩陣 train_feature_vector =train_feature.reshape(len(train_feature), 28,28,1).astype('float32') test_feature_vector = test_feature.reshape(len( test_feature), 28,28,1).astype('float32') #Features 特徵值標準化 train_feature_normalize = train_feature_vector/255 test_feature_normalize = test_feature_vector/255 #label 轉換為 One-Hot Encoding 編碼 train_label_onehot = np_utils.to_categorical(train_label) test_label_onehot = np_utils.to_categorical(test_label) #建立模型 model = Sequential() #建立卷積層1 model.add(Conv2D(filters=10, kernel_size=(3,3), padding='same', input_shape=(28,28,1), activation='relu')) #建立池化層1 model.add(MaxPooling2D(pool_size=(2, 2))) #(10,14,14) #建立卷積層2 model.add(Conv2D(filters=20, kernel_size=(3,3), padding='same', activation='relu')) #建立池化層2 model.add(MaxPooling2D(pool_size=(2, 2))) #(20,7,7) # Dropout層防止過度擬合,斷開比例:0.2 model.add(Dropout(0.2)) #建立平坦層:20*7*7=980 個神經元 model.add(Flatten()) #建立隱藏層 model.add(Dense(units=256, activation='relu')) #建立輸出層 model.add(Dense(units=10,activation='softmax')) #定義訓練方式 model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) #以(train_feature_normalize,train_label_onehot)資料訓練, #訓練資料保留 20% 作驗證,訓練10次、每批次讀取200筆資料,顯示簡易訓練過程 train_history =model.fit(x=train_feature_normalize, y=train_label_onehot,validation_split=0.2, epochs=10, batch_size=200,verbose=2) #評估準確率 scores = model.evaluate(test_feature_normalize, test_label_onehot) print('\n準確率=',scores[1]) #預測 (Old) #prediction=model.predict_classes(test_feature_normalize) prediction = (model.predict(test_feature_normalize)) prediction = np.argmax(prediction,axis=1) prediction #顯示圖像、預測值、真實值 show_images_labels_predictions(test_feature,test_label,prediction,0)